Special Session 117: Advances on nonlinear elliptic PDEs
Organizer(s): Laura Baldelli , Roberta Filippucci

Parallel Session 6 :: Tuesday, 12/17, 12:30-14:30                 Capital Suite 12 B
 12:30-13:00  Daniele Cassani (University of Insubria & RISM, Italy)
 Limiting cases in Choquard type equations and Schroedinger-Poisson systems
 13:00-13:30  Jaroslaw Mederski (Institute of Mathematics, Polish Academy of Sciences, Poland)
 Travelling waves for Maxwell`s equations in nonlinear and symmetric media
 13:30-14:00  Julia Henninger (KIT Karlsruhe, Germany)
 Special wave forms for a generalized semilinear wave equation
 14:00-14:30  Rafael Lopez-Soriano (Universidad de Granada, Spain)
 On some doubly critical elliptic systems

Parallel Session 7 :: Tuesday, 12/17, 14:45-16:45                 Capital Suite 12 B
 14:45-15:15  Vincenzo Ambrosio (Universita' Politecnica delle Marche, Italy)
 Nonlinear scalar field $(p_{1}, p_{2})$-Laplacian equations in $\mathbb{R}^{N}$: existence and multiplicity
 15:15-15:45  Francisco Javier Reyes Sanchez (Universidad de Granada, Spain)
 The problem of prescribing non-constant curvatures in a disk
 15:45-16:15  Mousomi Bhakta (Indian Institute of Science Education and Research Pune (IISER Pune), India)
 Fractional Schrodinger equations with mixed nonlinearities
 16:15-16:45  Teresa Isernia (Universita` Politecnica delle Marche, Italy)
 Least energy solutions for nonlinear fractional Choquard-Kirchhoff equations in $\mathbb{R}^{N}$

Parallel Session 8 :: Tuesday, 12/17, 17:00-19:30                 Capital Suite 12 B
 17:00-17:30  Giuseppina Autuori (Universita` Politecnica delle Marche, Italy)
 Existence results for quasilinear Choquard equations in $\mathbb{R}^N$
 17:30-18:00  Bartosz Bieganowski (University of Warsaw, Poland)
 Multiplicity of solutions to stronglu indefinite problems with sign-changing nonlinearities
 18:00-18:30  Miguel Martinez-Teruel (University of Granada, Spain)
 Quasilinear Schr\odinger Equation: a bifurcational approach
 18:30-19:00  Chao Ji (East China University of Science and Technology, Peoples Rep of China)
 Some recent results on normalized solutions for $(2,q)$-Laplacian equations