Special Session 2: Recent advances in nonlinear Schrodinger systems
Organizer(s): Juncheng Wei , Yuanze Wu

Parallel Session 6 :: Tuesday, 12/17, 12:30-14:30                 Capital Suite 10
 12:30-13:00  Nicola Soave (Universit\`a degli Studi di Torino, Italy)
 Normalized solutions of $L^2$-supercritical NLS equations on metric graphs
 13:00-13:30  Yeyao Hu (Central South University, Peoples Rep of China)
 Self-organizing pheonomena in Schrodinger type systems
 13:30-14:00  Shaohua Chen (Cape Breton University, Canada)
 Self-similar Blow-up Solutions of the Nonlinear Schrodinger Equation with Moving Mesh methods
 14:00-14:30  Giusi Vaira (University of Bari Aldo Moro, Italy)
 An Overview on Nonlinear Schrodinger systems

Parallel Session 7 :: Tuesday, 12/17, 14:45-16:45                 Capital Suite 10
 14:45-15:15  Isabella Ianni (Sapienza Universita di Roma, Italy)
 New solutions for the Lane-Emden problem in planar domains
 15:15-15:45  Jaroslaw Mederski (Institute of Mathematics, Polish Academy of Sciences, Poland)
 Multiple normalized solutions to a system of nonlinear Schroedinger equations
 15:45-16:15  Seunghyeok Kim (Hanyang University, Korea)
 Bubbling solutions of slightly subcritical and critical Lane-Emden systems
 16:15-16:45  Norihisa Ikoma (Keio University, Japan)
 The existence of $L^2$-normalized solutions in the $L^2$-critical setting

Parallel Session 8 :: Tuesday, 12/17, 17:00-19:30                 Capital Suite 10
 17:00-17:30  Xiaojun Chang (Northeast Normal University, Peoples Rep of China)
 Normalized solutions for a class of gradient-type Schrodinger systems under Neumman boundary condition
 17:30-18:00  Jiankang Xia (Northwestern Polytechnical University, Peoples Rep of China)
 Symmetric non-radial solutions for nonlinear Schr\odinger systems with mixed couplings
 18:00-18:30  Jianyi Chen (Qingdao Agricultural University, Peoples Rep of China)
 Time periodic solutions of the wave equations in a ball
 18:30-19:00  Sarika G (Netaji Subhas University of Technology Dwarka Delhi India, India)
 Quasilinear Schrodinger Equations Involving Stein-Weiss Convolution Type exponential Critical Nonlinearity