Special Session 58: Recent Advances in Numerical Methods for Partial Differential Equations

Highly efficient and energy stable multi-step SAV approaches for phase field models
Yanping Chen
Nanjing University of Posts and Telecommunications, CHINA
Peoples Rep of China
Co-Author(s):    
Abstract:
Recently, the scalar auxiliary variable (SAV) approach and its extended SAV-based approaches have been widely used to simulate a series of phase field models. However, many SAV-based schemes are known for the stability of a modified energy. In this paper, we construct a series of modified SAV approaches with unconditional energy dissipation law based on several improvements to the traditional SAV approach. Firstly, by introducing the three-step technique, we can reduce the number of constant coefficient linear equations that need to be solved at each time step, while retaining all of its other advantages. Secondly, the addition of energy-optimized technique and SAV/Lagrange multiplier technique can make the numerical schemes have the advantage of preserving the original energy dissipation. Thirdly, we use the first-order approximation of the energy balance equation in the GSAV approach, instead of discretizing the dynamic equation of the auxiliary variable, so that we can construct the high-order unconditional original energy stable numerical schemes. Finally, representative numerical examples show that the efficiency and accuracy of the proposed schemes are improved.