Special Session 41: Global and Blowup Solutions for Nonlinear Evolution Equations

Global non-existence of a coupled parabolic-hyperbolic system of thermoelastic type with history
Jorge A Esquivel-Avila
Universidad Autonoma Metropolitana
Mexico
Co-Author(s):    
Abstract:
We consider two abstract systems of parabolic-hyperbolic type that model thermoelastic problems. We study the influence of the physical constants and the initial data on the nonexistence of global solutions that in our framework are produced by the blow-up in finite time of the norm of the solution in the phase space. We employ a differential inequality to find sufficient conditions that produce the blow-up. To that end, we construct a set that is positive invariant for any positive value of the initial energy. As a result we found that the coupling with the parabolic equation stabilizes the system, as well as the damping term in the hyperbolic equation. Moreover, for any pair of positive values $(\xi,\epsilon)$, there exist initial data such that the corresponding solution with initial energy $\xi$ blows-up at a finite time less than $\epsilon$. Our purpose is to improve results previously published in the literature.