Special Session 77: Recent developments in variational problems and geometric analysis

EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR QUASILINEAR EQUATIONS WITH WEIGHTS
Roberta Filippucci
University of Perugia
Italy
Co-Author(s):    Laura Baldelli, Valentina Brizi, Yadong Zheng
Abstract:
In this talk, we present some recent results on existence and nonexistence of positive radial solutions for a Dirichlet problem both in the case of the $p$-Laplacian operator and of the mean curvature operator with weights in a ball with a suitable radius. Because of the presence of different weights, possibly singular or degenerate, the problem is delicate and requires an accurate qualitative analysis of the solutions, as well as the use of Liouville type results based on an appropriate Pohozaev type identity.