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Overall	Outline	
•  A selection of Peter Lax contributions

•  Dynamical systems & climate (MG & friends)



P.	D.	Lax	Contribu4ons	–	Selected!	
•  The Lax equivalence theorem in numerical analysis
•  Specific numerical schemes for hyperbolic PDEs

–  Lax-Friedrichs – first-order accurate, positive
–  Lax-Wendroff – second-order accurate

•  Hyperbolic systems of conservation laws
     – the entropy condition
•  ∞-dimensional Hamiltonian systems

–  Lax equation and Lax pairs for the KdV equation
–  Generalization to a large class of such PDEs
–  Extensions to localized coherent structures in geophysical flows

•  “PDE Lax”
     – Lax-Milgram theorem & its application to the finite-element method
      – Hopf-Lax-Oleinik formula for the Hamilton-Jacobi equation 
•  The “Lax school”



P.	D.	Lax	Contribu4ons	–	I,	Numerical	Analysis	
Ø  The Lax equivalence theorem in numerical analysis
Theorem. Given the consistency of a finite-difference scheme for an evolution 
problem (i.e., that it formally solves the hyperbolic or parabolic PDE at hand),
convergence çè stability (Lax & Richtmyer, CPAM, 1956).
Proof. Stability è convergence is pretty easy to prove, while convergence è 
stability is not, and the latter requires a functional-analysis trick.
Remark. In practice, the useful observation is that, if it’s consistent and it 
doesn’t blow up in your face, it will eventually converge, as Δt à 0.

This result has been called the Fundamental Theorem of Numerical 
Analysis: “[It] gave us work to do, precise results to prove, something to 
accomplish with our analysis and our lives.”(*)

(*) G. Strang, in his review of the book
Peter Lax, Mathematician: An Illustrated Memoir, 2015,
by Reuben Hersh, American Mathematical Society, Providence, RI;
see SIAM News, May 1, 2015.



P.	D.	Lax	Contribu4ons	–	I,	Numerical	Analysis	
Ø Practical finite-difference schemes for hyperbolic PDEs
– Lax-Friedrichs scheme
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 The LF scheme is FTCS – forward in time & centered in space. It preserves positivity,
 & thus monotonicity of shocks in the nonlinear case, but is not terribly  accurate,
 i.e., its truncation error is only of first order in Δt and Δx.

– Lax-Wendroff scheme
 The LW scheme achieves second-order accuracy by also using ui

n  in the Taylor 
 expansion of ux, but positivity is lost; this loss leads to “ringing” or the Gibbs
 phenomenon in the computation of shocks.
 The quandary of accuracy vs. monotonicity was solved in the Ph.D. thesis of Amiram 
 Harten (RIP) with Peter, by introducing total-variation diminishing (TVD) methods. Later, 
 Ami and Stanley Osher realized the applicability and usefulness of TVD methods in
 “edge detection” and hence image compression.

ghil
Line

ghil
Highlight

ghil
Highlight

ghil
Highlight

ghil
Highlight



P.	D.	Lax	Contribu4ons	–	II,	∞-D	Dynamical	Systems	

Not every big wave is a solitary wave nor a soliton: it must
(a) be local; (b) preserve its shape and (c) “non-interact.”



P.	D.	Lax	Contribu4ons	–	II,	∞-D	Dynamical	Systems	
Ø  The KdV equation – J. Scott Russell (1834) – observation + experiment
•  J. Boussinesq (1877) + D.J. Korteweg & G. De Vries (1895): KdV equation 
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•  The KdV equation balances nonlinearity uux and dispersion uxxx of the waves.
•  N. Zabusky & M. Kruskal (1965) obtain numerical solutions and, with
     C.S. Gardner, J.M. Greene & R.M. Miura (1967, 1968), Kruskal finds 
     an infinite number of constants of motion.     

P.D. Lax (CPAM, 1968) associated with every solution u = u(t) of
ut = K(u) a linear Sturm-Liouville operator Lu and the linear PDE

Lt = BL� LB. (L)
Here Bt is a one-parameter family of unitary operators, like Lu(t),
(B,L) is a Lax pair and (L) is the Lax equation.

Ø  Many other ∞-dimensional Hamiltonian problems have these nice properties,
     i.e., an infinite number of invariants = {the eigenvalues of L}:  
     nonlinear Schrödinger equation, sine-Gordon equation, Toda lattice.
Ø  Localized coherent structures in geophysical fluid dynamics (GFD): 
     2-D modons and their 3-D generalizations, thermons (“hetons”), etc.
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The Lax School - I 



The Lax School - II 

 Peter Lax has 55 (former) Ph.D. students and 555 descendants.

 But he was labeled “the most versatile mathematician of his generation” 
 by the Abel Prize selection committee.

 And I would say that his school extends to wherever good mathematics 
 is done and to whoever does it, …

... especially if they are as kind and charming as Peter.
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The Lax School - II 

 Peter Lax has 55 (former) Ph.D. students and 555 descendants.

 But he was labeled “the most versatile mathematician of his generation” 
 by the Abel Prize selection committee.

 And I would say that his school extends to wherever good mathematics 
 is done and to whoever does it, …

... especially if they are as kind and charming as Peter(*).

(*) Please see
Peter D. Lax: A Life in Mathematics, by M. Ghil
http://aimsciences.org/conferences/2016/Lax_biosketch-AIMS-M_Ghil_vf.pdf



Outline	–	Dynamical	systems	&	climate	sensi4vity	
•  The IPCC process: results and uncertainties
•  Natural climate variability as a source of uncertainties

–  sensitivity to initial data è error growth
–  sensitivity to model formulation è see below!

•  Uncertainties and how to fix them
–  structural stability and other kinds of robustness
–  non-autonomous and random dynamical systems (NDDS & RDS)

•  Two illustrative examples
–  the Lorenz convection model
–  an El Niño–Southern Oscillation (ENSO) model 

•  A mathematical definition of climate sensitivity		
•  Conclusions and references

  – natural variability and anthropogenic forcing: the “grand unification”
  – selected bibliography



•  The climate system is highly nonlinear and quite complex."
•  The systemʼs major components — the atmosphere, oceans, 

ice sheets — evolve on many time and space scales. "
•  Its predictive understanding has to rely on the systemʼs 

physical, chemical and biological modeling, "
"but also on the thorough mathematical analysis of the models "
"thus obtained: the forest vs. the trees."

•  The hierarchical modeling approach allows one to "
"give proper weight to the understanding provided by the"
"models vs. their realism: back-and-forth between "
!“toy” (conceptual) and detailed (“realistic”) models, "
"and between models and data."

•  How do we disentangle natural variability from the 
anthropogenic forcing: can we & should we, or not?!



Earth System Science Overview, NASA Advisory Council, 1986 



Composite spectrum of climate variability!
Standard treatement of frequency bands:!
   1. High frequencies – white noise (or ‘‘colored’’) !
   2. Low frequencies – slow evolution of parameters !

From Ghil (2001, EGEC), after Mitchell* (1976)!
* ‘‘No known source of deterministic internal variability’’!
** 27 years – Brier (1968, Rev. Geophys.)!



Climate	  and	  Its	  Sensi&vity	  
Let’s say CO2 doubles:

How will “climate” change?

 
    Ghil (in Encycl. Global Environmental  
    Change, 2002)

2. Climate is purely periodic;
    if so, mean temperature will
    (maybe) shift gradually to its
    new equilibrium value. 
    But how will the period, amplitude
    and phase of the limit cycle change?

1. Climate is in stable equilibrium
    (fixed point); if so, mean temperature
    will just shift gradually to its new 
    equilibrium value.

3. And how about some “real stuff” 
    now: chaotic + random?
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Greenhouse gases (GHGs) go up,"
temperatures go up:"

τκ,0

It’s gotta do with us, at least a bit, 
doesn’t it? 

Wikicommons, from "
Hansen et al. (PNAS, 2006); "
see also http://data.giss.nasa.gov/
gistemp/graphs/"



Temperatures rise: 
•  What about impacts? 
•  How to adapt? 

Source : IPCC (2007), 
AR4, WGI, SPM  

The answer, my friend, 
is blowing in the wind, 
i.e., it depends on the  
accuracy and reliability 
of the forecast … 



•  The IPCC process: results and uncertainties"
•  Natural climate variability as a source of uncertainties"

–  sensitivity to initial data  error growth"
–  sensitivity to model formulation  see below!"

•  Uncertainties and how to fix them"
–  structural stability and other kinds of robustness"
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•  Linear response theory and climate sensitivity  
•  Conclusions and references"
"  – natural variability and anthropogenic forcing: the “grand unification”"
"  – selected bibliography"



So whatSo what’’s it s it gonna gonna be like, by 2100?be like, by 2100?
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The uncertainties 
might be intrinsic, 

rather than mere
“tuning problems”

If so, maybe
stochastic structural 
stability could help!

The DDS dream of structural stability (from Abraham  & Marsden, 1978)

Might fit in nicely with
     recent taste for 
“stochastic 
     parameterizations” 



Consider the scalar, linear ordinary differential equation (ODE)!

The autonomous part of this ODE, ! !               is dissipative !
and all solutions ! ! ! ! ! ! ! !   converge to 0 as !

A linear, dissipative, forced example: forward vs. pullback attraction !

ẋ = −αx+ σt , α > 0 , σ > 0 .
ẋ = −αx ,

t → +∞ .x(t;x0) = x(t;x(0) = x0)

x(s, t;x0) = x(s, t;x(s) = x0) ,

s → −∞ ,

What about the non-autonomous, forced ODE? As the energy being put into the system 
by the forcing is dissipated, we expect things to change in time. In fact, if we “pull back” 
far enough, replace x(t; x0) by !

and let ! ! ! we get the !
pullback attractor a = a(t) !
in the figure, !
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Random Dynamical Systems (RDS), I - RDS theory

This theory is the counterpart for randomly forced dynamical
systems (RDS) of the geometric theory of ordinary differential
equations (ODEs). It allows one to treat stochastic differential
equations (SDEs) — and more general systems driven by noise
— as flows in (phase space)×(probability space).
SDE∼ODE, RDS∼DDS, L. Arnold (1998)∼V.I. Arnol’d (1983).

Setting:

(i) A phase space X . Example: Rn.

(ii) A probability space (Ω,F ,P). Example: The Wiener space
Ω = C0(R;Rn) with Wiener measure P.

(iii) A model of the noise θ(t) : Ω→ Ω that preserves the measure P, i.e.
θ(t)P = P; θ is called the driving system.
Example: W (t , θ(s)ω) = W (t + s, ω)−W (s, ω);
it starts the noise at s instead of t = 0.

(iv) A mapping ϕ : R× Ω× X → X with the cocycle property.
Example: The solution operator of an SDE.

Michael Ghil Climate Change and Climate Sensitivity



RDS, II - A Geometric View of SDEs

ϕ is a random dynamical system (RDS)
Θ(t)(x , ω) = (θ(t)ω, ϕ(t , ω)x) is a flow on the bundle

Michael Ghil Climate Change and Climate Sensitivity



RDS, III- Random attractors (RAs)
A random attractor A(ω) is both invariant and “pullback" attracting:

(a) Invariant: ϕ(t , ω)A(ω) = A(θ(t)ω).

(b) Attracting: ∀B ⊂ X , limt→∞ dist(ϕ(t , θ(−t)ω)B,A(ω)) = 0 a.s.

Michael Ghil Climate Change and Climate Sensitivity
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Random attractor of the stochastic Lorenz system

Snapshot of the random attractor (RA)

A snapshot of the RA, A(ω), computed at a fixed time t and for the
same realization ω; it is made up of points transported by the stochastic
flow, from the remote past t − T , T >> 1.

We use multiplicative noise in the deterministic Lorenz model, with the
classical parameter values b = 8/3, σ = 10, and r = 28.

Even computed pathwise, this object supports meaningful statistics.

Michael Ghil Climate Change and Climate Sensitivity



Sample measures supported by the R.A.

We compute the probability measure on the R.A. at some fixed time t ,
and for a fixed realization ω. We show a “projection”,

∫
µω(x , y , z)dy ,

with multiplicative noise: dxi=Lorenz(x1, x2, x3)dt + α xidWt ; i ∈ {1, 2, 3}.
10 million of initial points have been used for this picture!

Michael Ghil Climate Change and Climate Sensitivity



Sample measure supported by the R.A.

Still 1 Billion I.D., and α = 0.5. Another one?

Michael Ghil Climate Change and Climate Sensitivity



Sample measure supported by the R.A.

Sample measures evolve with time.
Recall that these sample measures are the frozen
statistics at a time t for a realization ω.

How do these frozen statistics evolve with time?

Action!

Michael Ghil Climate Change and Climate Sensitivity



 Michael Ghil 

A day in the life of the Lorenz (1963) modelʼs random attractor, or LORA for short;"
see SI in Chekroun, Simonnet & Ghil (2011, Physica D)"



Outline	
•  The IPCC process: results and uncertainties
•  Natural climate variability as a source of uncertainties

–  sensitivity to initial data è error growth
–  sensitivity to model formulation è see below!

•  Uncertainties and how to fix them
–  structural stability and other kinds of robustness
–  non-autonomous and random dynamical systems (NDDS & RDS)

•  Two illustrative examples
–  the Lorenz convection model
–  an El Niño–Southern Oscillation (ENSO) model 

•  A mathematical definition of climate sensitivity 
•  Conclusions and references

  – natural variability and anthropogenic forcing: the “grand unification”
  – selected bibliography



Physically closed system, modeled  
mathematically as autonomous "
system: neither deterministic 
(anthropogenic) nor random 
(natural) forcing."

The attractor is strange, but still 
fixed in time ~ “irrational” number. "

Climate sensitivity ~ change in the 
average value (first moment) of the 
coordinates (x, y, z) as a parameter 
λ changes."



Physically open system, modeled 
mathematically as non-autonomous "
system: allows for deterministic 
(anthropogenic) as well as random 
(natural) forcing."

The attractor is “pullback” and 
evolves in time ~ “imaginary” or  "
                         “complex” number. "

Climate sensitivity ~ change in the 
statistical properties (first and 
higher-order moments) of the 
attractor as one or more  
parameters (λ, μ, …) change."

Ghil (Encyclopedia of Atmospheric 
!Sciences, 2nd ed., 2012)"



Parameter dependence – I 
It can be smooth or it can be rough:
Niño-3 SSTs from intermediate coupled model
for ENSO (Jin, Neelin & Ghil, 1994, 1996)

Skewness & kurtosis of the SSTs:
time series of 4000 years, 
	  

	   	  	  
	   	  	  

	  
	  

M. Chekroun (work in progress)



Sample measures for an NDDE model of ENSO 
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The Galanti-Tziperman (GT) model (JAS, 1999)

Neutral delay-differential equation (NDDE),
derived from Cane-Zebiak and Jin-Neelin
models for ENSO: T is East-basin SST 

  and h is thermocline depth.  

Seasonal forcing given by

µ(t) = 1 + �cos(⇤t+ ⇥).
The pullback attractor and its

invariant measures were computed.

Figure	  shows	  the	  changes	  in	  the	  mean,	  
2nd	  &	  4th	  moment	  of	  h(t),	  along	  with	  the	  	  
Wasserstein	  distance	  dW,	  for	  changes	  	  
of	  0–5%	  in	  the	  delay	  parameter	  	  	  	  	  	  	  	  .	  	  	  ⌧�,0

Note	  intervals	  of	  both	  smooth	  &	  rough	  dependence!	  



The time-dependent pullback attractor of the GT model supports an invariant 
measure               , whose density is plotted in 3-D perspective.
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The plot is in delay coordinates h(t+1) vs.
h(t) and the density is highly 
concentrated along 1-D filaments and, 
furthermore, exhibits sharp, near–0-D
peaks on these filaments.

The Wasserstein distance dW
between one such configuration, 
at given parameter values, and 
another one, at a different set of 
values, is proportional to the work 
needed to move the total probability 
mass from one configuration to the other.

Climate sensitivity     can be defined as

 

�
� = ⇤dW/⇤⇥

⌫ = ⌫(t)



How to define climate sensitivity or, 
What happens when there’s natural variability? 

� = ⇤dW/⇤⇥

This definition allows us to watch how “the earth moves,” as it is affected !
by both natural and anthropogenic forcing, in the presence of natural!
variability, which includes both chaotic & random behavior:!
chaotic + random behavior: !
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•  The IPCC process: results and uncertainties"
•  Natural climate variability as a source of uncertainties"

–  sensitivity to initial data  error growth"
–  sensitivity to model formulation  see below!"

•  Uncertainties and how to fix them"
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Summary!
•  A change of paradigm from closed, autonomous systems!
"to open, non-autonomous ones.!

•  Random attractors are (i) spectacular, (ii) useful, and "
"(iii) just starting to be explored for climate applications."

Work in progress!
•  Study the effect of specific stochastic parametrizations "
"on model robustness."

•  Applications to intermediate models and GCMs."
•  Implications for climate sensitivity."
•  Implications for predictability?"



Lorenz (JAS, 1963)"
Climate is deterministic and autonomous,"
     but highly nonlinear."
Trajectories diverge exponentially, "
     forward asymptotic PDF is multimodal."

Hasselmann (Tellus, 1976)"
Climate is stochastic and noise-driven,"
     but quite linear."
Trajectories decay back to the mean, "
     forward asymptotic PDF is unimodal."



What do we know?!
•  Itʼs getting warmer."
•  We do contribute to it."
•  So we should act as best we know and can!"

What do we know less well?!
•     By how much?"

  – Is it getting warmer …"
  – Do we contribute to it …"

•     How does the climate system (atmosphere, ocean, ice, etc.) really work?"
•     How does natural variability interact with anthropogenic forcing?"
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Unfortunately, thingsUnfortunately, things
arenaren’’tt  all all that easy!that easy!

Ghil, M., 2002: Natural climate variability, 
in Encyclopedia of Global Environmental 
Change, T. Munn  (Ed.), Vol. 1, Wiley

What to do?

Try to achieve better
interpretation of, and
agreement between,
models …
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Global	  warming	  and	  	  	  
its	  socio-‐economic	  impacts–	  II	  	  

Temperatures	  rise:	  
•  What	  about	  impacts?	  
•  How	  to	  adapt?	  

Source : IPCC (2013), #
#AR5, WGI, SPM  

AR5 vs. AR4 
 A certain air of déjà vu: 
 GHG “scenarios” have been 
 replaced by “representative 
 concentration pathways” (RCPs), 
 more dire predictions, 
 but the uncertainties remain. 

 



Warming slow-down 

It was a wonderful encounter !
with some leading physicists!
and mathematicians, as well!
as with GFD & climate!
researchers, and with great!
students and post-docs. !
!It taught me, as Erice had done !
in March 1981, how well !
organized the SIF and Italians !
in general can be.!

But most of all, Michèle & I 
found out we’d be parents soon   



Ø  The most active 
 scales lie along a 
 diagonal in this 
 space vs. time  
 plot. 

Ø Why this is so  
 is far from clear  
 as of now. 

Ø We’ll deal with 
 weather first, 
 then climate. 

Multiple scales of motion: 
 Space-time organization 



Uppsala/Nordica            26 May 2011                                    © Leonard Smith 

>> 

Source: Met Office 
Leonard Smith               26 May 2011                               Uppsala/Nordica          



Courtesy Tim Palmer, 2009"



The classical view of dynamical 
systems theory is:"

positive Lyapunov exponent  "
    trajectories diverge exponentially"

But the presence of multiple "
    regimes implies a much "
    more structured behavior "
    in phase space"

L. A. Smith (Encycl. Atmos. Sci., 2003)"

Still, the probability distribution  "
    function (pdf), when calculated "
    forward in time, is pretty "
    smeared out 



Global warming and ‘‘global weirding’’  

“CLIMATE STRANGE!
FORGET GLOBAL WARMING—AND!
GET READY for GLOBAL WEIRDING!
BY BRYAN WALSH”!
!
TIME MAGAZINE, Dec. 29, 2014 – Jan. 5, 2015!

“The New Rule: For the next few (?) 
years, global warming will lead to 
colder, more brutal winters.” !

Ø  Oh, thank you for the latest prediction from a science journalist — based !
     on interesting but still rather tentative, & hotly debated, suggestions from !
     a few media-loving (& vice-versa) researchers.!
!
Ø  And if this is so certain, why wasn’t it predicted by IPCC(*) and other models 

BEFORE it happened?!
!
(*) Intergovernmental Panel on Climate Change!



Transitions Between Blocked and Zonal Flows 
in a Barotropic Rotating Annulus with Topography 

Weeks, Tian, Urbach, Ide, Swinney, & Ghil (Science, 1997)!

        Zonal Flow     Blocked Flow 
   13–22 Dec. 1978       10–19 Jan. 1963  



SSA (prefilter) + (low-order) MEM

“Stack” spectrum

In good agreement with MTM peaks  of Ghil & Vautard (1991, Nature) for the Jones et al. 
(1986) temperatures & stack spectra of Vautard et al. (1992, Physica D) for the IPCC 
“consensus” record (both global), to wit 26.3, 14.5, 9.6, 7.5 and 5.2 years.

Peaks at 27 & 14 years also in Koch sea-ice index off Iceland (Stocker & Mysak, 1992), etc.                                                       
Plaut, Ghil & Vautard (1995, Science) 

2.0

1.5

1.0

0.5

0.0

0.05

25.0 years

14.2 years

7.7 years

5.5 years

0.10 0.15 0.20

Frequency (year-1)

P
o

w
e

r 
s
p

e
c
tr

a

Total Power
Thermohaline mode
Coupled O-A mode
Wind-driven mode

Interannual

Interdecadal

Mid-latitude

L-F ENSO
mode

8/28



Modeled Climate Sensitivity 

Climate	  sensi+vity	  as	  es+mated	  from	  a	  series	  of	  “snapshot”	  simula+ons	  	  
of	  paleoclimate	  using	  HadCM3.	  

Courtesy	  of	  Paul	  J.	  Valdes	  



Parameter dependence – II 
When it is smooth, one can optimize a GCM’s single-parameter dependence
	  

	   	  	  
	   	  	  

	  
	  

ICTP AGCM (Neelin, Bracco, Luo, McWilliams & Meyerson, PNAS, 2010)



Parameter dependence – III 
Multi-objective algorithms avoid arbitrary weighting of criteria 

in a unique cost function:

	  

	   	  	  
	   	  	  

	  
	  

ICTP AGCM (Neelin, Bracco, Luo, McWilliams & Meyerson, PNAS, 2010)

Optimization algorithms that are  



It’s gotta do with us, at 
least a bit, ain’t it? 

But just how much? 

IPCC (2007)



www.lsecats.ac.uk  

Ed Tredger !
(PhD thesis, LSE, 2009)!

L.A. (“Lenny”) Smith (2009)!
personal communication !

AR4 adjustment of 20th century simulation 



Non-autonomous Dynamical Systems - II

Remarks
We’ve just shown that:

|x(t , s; x0)− a(t)| −→
s→−∞

0 ; for every t fixed,

and for all initial data x0, with a(t) = σ
α
(t − 1/α).

We’ve just encountered the concept of pullback attraction;
here {a(t)} is the pullback attractor of the system (1).

What does it mean physically?
The pullback attractor provides a way to assess an asymptotic regime
at time t — the time at which we observe the system — for a system
starting to evolve from the remote past s, s << t .

This asymptotic regime evolves with time: it is a dynamical object.

Dissipation now leads to a dynamic object rather than to a static one,
like the strange attractor of an autonomous system.

Michael Ghil Climate Change and Climate Sensitivity
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Random Dynamical Systems (RDS), I - RDS theory

This theory is the counterpart for randomly forced dynamical
systems (RDS) of the geometric theory of ordinary differential
equations (ODEs). It allows one to treat stochastic differential
equations (SDEs) — and more general systems driven by noise
— as flows in (phase space)×(probability space).
SDE∼ODE, RDS∼DDS, L. Arnold (1998)∼V.I. Arnol’d (1983).

Setting:

(i) A phase space X . Example: Rn.

(ii) A probability space (Ω,F ,P). Example: The Wiener space
Ω = C0(R;Rn) with Wiener measure P.

(iii) A model of the noise θ(t) : Ω→ Ω that preserves the measure P, i.e.
θ(t)P = P; θ is called the driving system.
Example: W (t , θ(s)ω) = W (t + s, ω)−W (s, ω);
it starts the noise at s instead of t = 0.

(iv) A mapping ϕ : R× Ω× X → X with the cocycle property.
Example: The solution operator of an SDE.

Michael Ghil Climate Change and Climate Sensitivity



Applications to a nonlinear stochastic El Niño model

Chekroun, Simonnet and Ghil, 2011

Timmerman & Jin (Geophys. Res. Lett., 2002) have derived the following
low-order, tropical-atmosphere–ocean model. The model has three variables:
thermocline depth anomaly h, and
SSTs T1 and T2 in the western and eastern basin.

Ṫ1 = −α(T1 − Tr )− 2εu
L (T2 − T1),

Ṫ2 = −α(T2 − Tr )− w
Hm

(T2 − Tsub),

ḣ = r(−h − bLτ/2).

The related diagnostic equations are:

Tsub = Tr − Tr−Tr0
2 [1− tanh(H + h2 − z0)/h∗]

τ = a
β
(T1 − T2)[ξt − 1].

τ : the wind stress anomalies, w = −βτ/Hm: the equatorial upwelling.

u = βLτ/2: the zonal advection, Tsub: the subsurface temperature.

Wind stress bursts are modeled as white noise ξt of variance σ,
and ε measures the strength of the zonal advection.

Michael Ghil Climate Change and Climate Sensitivity



Random attractors: the frozen statistics

Random Shil’nikov horseshoes

Horseshoes can be noise-excited,
left: a weakly-perturbed limit cycle, right: the same with larger noise.

Golden: most frequently-visited areas; white ’plus’ sign: most visited.

Michael Ghil Climate Change and Climate Sensitivity



An episode in the random’s attractor life

Michael Ghil Climate Change and Climate Sensitivity



F.-F. Jin, J.D. Neelin & M. Ghil, Physica D, 98, 442-465, 1996 



But deterministic chaos doesn’t explain all: 
there are many other sources of irregularity! 
•  The energy spectrum of the  

 atmosphere and ocean is 
 “full”: all space & time scales 

  are active and they all  
  contribute to forecasting 
  uncertainties. 

•  Still, one can imagine that 
 the longest & slowest scales 
 contribute most to the  
 longest-term forecasts. 

•  “One person’s signal is  
 another person’s noise.” After Nastrom & Gage (JAS, 1985)!



♥ Feed the world today 
or…  

♥ … keep today’s 
climate for tomorrow? 

Davos, Feb. 2008, photos by TIME Magazine, 11 Feb. ‘08; 
see also Hillerbrand & Ghil, Physica D, 2008, 237, 2132–2138, 
doi:10.1016/j.physd.2008.02.015 . 
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